Robust Stability Limit of Delayed Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Robust Stability Limit of Delayed Dynamical Systems
Computation of the stability limit of systems with time delay is essential in many research and industrial applications. Most of the computational methods consider the exact model of the system, and do not take into account the uncertainties. However, the stability charts are highly sensitive to the change of input parameters, such as eigenfrequency and time-delay. Furthermore, the computation ...
متن کاملRobust Stability of Singularly Impulsive Dynamical Systems
In this paper, we present results of the robust stability analysis for the class of nonlinear uncertain singularly impulsive dynamical systems. We present sufficient conditions for the robust stability of a class of nonlinear uncertain singularly impulsive dynamical systems. The problem of evaluating performance bounds for a nonlinear-nonquadratic hybrid cost functional depending upon a class o...
متن کاملRobust Stability of Systems with Delayed Feedback*
Some issues in the stability of differential delay systems in the linear and the nonlinear case are investigated. In particular, sufficient robustness conditions are derived under which a system remains stable, independent of the length of the delay(s). Applications in the design of delayed feedback systems are given. Two approaches are presented, one based on Lyapunov theory, the other on a tr...
متن کاملGlobal Exponential Stability of Delayed Periodic Dynamical Systems
In this paper, we discuss delayed periodic dynamical systems, compare capability of criteria of global exponential stability in terms of various L (1 ≤ p < ∞) norms. A general approach to investigate global exponential stability in terms of various L (1 ≤ p < ∞) norms is given. Sufficient conditions ensuring global exponential stability are given, too. Comparisons of various stability criteria ...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Polytechnica Mechanical Engineering
سال: 2015
ISSN: 0324-6051,1587-379X
DOI: 10.3311/ppme.7783